
USING NVIDIA GPUS WITH PYTHON
HANDS-ON WORKSHOP



AGENDA

Overview of GPU Computing

Accessing the Workshop Materials

GPU-Accelerated Numerical Computing with CuPy

GPU-Accelerated Data Science with RAPIDS

Custom GPU Kernels with Numba

Case Study: Accelerating Geospatial Nearest-Neighbor Search



Overview of GPU Computing



4

Artificial IntelligenceComputer GraphicsGPU Computing

NVIDIA DELIVERS END-TO-END ACCELERATION



5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ACCELERATED COMPUTING WITH GPUS

Application Code

+

5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

GPU
Optimized for 
Parallel Tasks



Combination of Accelerated Computing, Data Center Scale and AI

MILLION-X SPEEDUP FOR INNOVATION AND DISCOVERY

DRUG DISCOVERY
COVID Multi-Scale Modeling

RENEWABLE ENERGY
Real-time Fusion Reactor Simulation

INDUSTRIAL HPC
Real-time CFD

1980 1990 2000 2010 2020

Single-threaded perf

1.5X per year

1.1X per year
102

103

104

105

106

107

109

108

101

MACHINE

LEARNING

SCALE

UP & OUT

ACCELERATED

COMPUTING

ASTROPHYSICS
Gravitational Wave Detection



PROGRAMMING THE NVIDIA PLATFORM
CPU, GPU, and Network

ACCELERATED STANDARD LANGUAGES
ISO C++, ISO Fortran

PLATFORM SPECIALIZATION
CUDA

ACCELERATION LIBRARIES

Core CommunicationMath Data Analytics AI Quantum

std::transform(par, x, x+n, y, y,
[=](float x, float y){ return y + 

a*x; }
);

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

import cunumeric as np
…
def saxpy(a, x, y):

y[:] += a*x

#pragma acc data copy(x,y) {
...
std::transform(par, x, x+n, y, y,

[=](float x, float y){
return y + a*x;

});
...
}

#pragma omp target data map(x,y) {
...
std::transform(par, x, x+n, y, y,

[=](float x, float y){
return y + a*x;

});
...
}

__global__ 

void saxpy(int n, float a, 

float *x, float *y) { 

int i = blockIdx.x*blockDim.x +

threadIdx.x; 

if (i < n) y[i] += a*x[i]; 

} 

int main(void) { 

...

cudaMemcpy(d_x, x, ...);

cudaMemcpy(d_y, y, ...);

saxpy<<<(N+255)/256,256>>>(...); 

cudaMemcpy(y, d_y, ...);

ACCELERATED STANDARD LANGUAGES

ISO C++, ISO Fortran

INCREMENTAL PORTABLE OPTIMIZATION

OpenACC, OpenMP

PLATFORM SPECIALIZATION

CUDA



THE GAP BETWEEN PYTHON AND GPUS

• C, Fortran

• Compiled

• High-Performance

NVIDIA

GPUs
Python

• High-level

• Interactive, versatile

• Easy to prototype

• Automatic memory 

management

• Dynamic typing

• Robust package 

management (conda, 

pip)

• MANY libraries 

available



BRIDGING THE GAP BETWEEN PYTHON AND GPUS

• C, Fortran

• Compiled

• High-Performance

NVIDIA

GPUs
Python

• High-level

• Interactive, versatile

• Easy to prototype

• Automatic memory 

management

• Dynamic typing

• Robust package 

management (conda, 

pip)

• MANY libraries 

available

JIT 
Compilation

Low-Level 
Language 
Bindings

CUDA-X 
Libraries



A FEW GENERAL TIPS FOR SUCCESSFUL GPU COMPUTING

• Minimize data movement to and from the GPU

• What happens on the GPU, stays on the GPU!

• PCI express is a bottleneck for data movement

• Try NVLink for GPU peer-to-peer, 600 GB/s!

• GPUs are parallel processing machines

• Leave serial operations to the CPU

• Look for high arithmetic intensity, chunky loops, dense linear algebra

• Experiment with reduced precision, mixed-precision iterative refinement

• High memory bandwidth - Fast FFTs.

• Stand on the Shoulders of Those Before You!

• There is a rich ecosystem of GPU-accelerated libraries

https://developer.nvidia.com/gpu-accelerated-libraries

• Profiling tools (Nsight) are compatible with Python GPU tools

We care about performance – make a relevant test suite!

• Many applications are already GPU-accelerated

• https://www.nvidia.com/en-us/gpu-accelerated-applications/

• https://ngc.nvidia.com/

CPU

Host Memory
DDR4

P100
GPU

GPU Memory
HBM2

~50GB/s

~16GB/s

PCIe gen3

~740GB/s

https://developer.nvidia.com/gpu-accelerated-libraries
https://www.nvidia.com/en-us/gpu-accelerated-applications/
https://catalog.ngc.nvidia.com/


Accessing the Workshop Materials



DEMO SYSTEM
NVIDIA P100

Results contained within this presentation reflect workloads run on either a single P100 GPU or a multi-GPU setup. We have 
sized the problems to fit the available memory for this GPU. See the results pages at the end of the presentation for results

on a larger DGX Station with four A100 Tensor Core GPUs each with 80 GB memory.



ACCESSING THE WORKSHOP MATERIALS

Do you have an NVIDIA Developer Account?

https://developer.nvidia.com/

https://developer.nvidia.com/


Notebook 1: Introduction to CuPy

Working in Section:
“Introduction to Workshop Lab Environment”



REPLICATING THE WORKSHOP ENVIRONMENT

NVIDIA NGC

RAPIDS Container

https://ngc.nvidia.com

RAPIDS

Release Selector

https://rapids.ai

https://ngc.nvidia.com/
https://rapids.ai/


GPU-Accelerated Numerical Computing with CuPy



NUMERICAL COMPUTING IN PYTHON

• Mathematical focus
• Operates on arrays of data

• ndarray, holds data of same type

• Many years of development
• Highly tuned for CPUs

• NumPy like interface
• Trivially port code to GPU
• Copy data to GPU

• CuPy ndarray

• Data interoperability with DL 
frameworks, RAPIDS, and Numba

• Uses high tuned NVIDIA libraries
• Can write custom CUDA functions



CUPY
A NumPy like interface to GPU-acceleration ND-Array operations

import cupy as cp

size = 4096

A = cp.random.randn(size,size)

Q, R = cp.lingalg.qr(A)

import numpy as np

size = 4096

A = np.random.randn(size,size)

Q, R = np.lingalg.qr(A)

BEFORE AFTER

52x Speedup!



Notebook 1: Introduction to CuPy

Working in Section:
“Introduction to CuPy”



KERNEL OVERHEAD

JIT Compilation

• What is the size of A?

• What is the datatype?

• Which GPU-accelerated libraries are available?

• Compiler optimizations for custom kernels 



KERNEL OVERHEAD

@cp.fuse

def fused_squared_diff(x, y):

return (x - y) * (x – y)

@jit

def Add(a, b):

return a + b

==================================

#pragma acc parallel

{

#pragma acc loop 

for(int i= 0; j < N; i++) {

a[i] = 0;

}

}

Kernel Launch Overhead

• Python wrappers around CUDA API call for kernel execution

• Kicking off the CUDA kernel (OS, CUDA Driver)

• GPU context switching from another task

• Cost is on the order of microseconds

Defensive Strategies
• Increase dataset size 

• Combine small kernels together

• @cupy.fuse for elementwise or reduction kernels

• Dynamic programming

• Use CUDA streams to backfill GPU work queue

• Available via CuPy, Numba

Python Decorators



Notebook 1: Introduction to CuPy

Working in Section:
“Kernel Overhead”



CPU

Host Memory
DDR4

P100
GPU

GPU Memory
HBM2

~50GB/s

~16GB/s

PCIe gen3

~740GB/s

DATA MOVEMENT OVERHEAD



DATA MOVEMENT OVERHEAD

GPU

Process on 
GPU

Create 
Data

on GPU

Create Data
on CPU

Copy Data to GPU
Over PCIe

Process on 
GPU

time

Data Movement Considerations

• Do we have enough work to amortize data 

transfer cost?

• Can we create our data on the GPU instead?

• CuPy ndarrays stay on GPU until retrieved

• Y = AX + XAT

• Can we move more of the workflow to GPU?

• Overlap computation with data movement?

cuRAND



Notebook 1: Introduction to CuPy

Working in Section:
“Data Movement Overhead”



WORKING WITH GPU MEMORY

• How much GPU memory is available?

• Does my problem fit?

• Can I split my problem into stages?

• Split across Multiple GPUs?



WORKING WITH GPU MEMORY

GPU 0 GPU 1 CPU 0 CPU 1

GPU Address Space Host Address Space

Array1. MoveArrayToGPU()

2. DoGPUWork()
Array

3. MoveArrayToCPU()Array

4. DoCPUWork()
Array

• How much GPU memory is available?

• Does my problem fit?

• Can I split my problem into stages?

• Split across Multiple GPUs?

Explicit Data Movement



WORKING WITH GPU MEMORY

GPU 0 GPU 1 CPU 0 CPU 1

GPU Address Space Host Address Space

Array1. MoveArrayToGPU()

2. DoGPUWork()
Array

3. MoveArrayToCPU()Array

4. DoCPUWork()
Array

• How much GPU memory is available?

• Does my problem fit?

• Can I split my problem into stages?

• Split across Multiple GPUs?

Implicit Data Movement



UNIFIED MEMORY

GPU 0 GPU 1 GPU 7… CPU 0 CPU 1

Unified Memory Address Space

Now we can…

• Oversubscribe GPU Memory

• Allocate data up to size of System Memory

• Program more easily with CPU/GPU Data Coherence

• Prefetch data with CuPy ManagedMemory API

GPU Memory Space CPU Memory Space

Array

2. Triggers Data Transfer

1.Page 

Fault



Notebook 1: Introduction to CuPy

Working in Section:
“Managing GPU Memory”

**Don’t forget to restart the kernel**



PYTHON ECOSYSTEM GOALS
Have Your Cake and Eat It Too

def cg_solve(A, b, conv_iters):
x = np.zeros_like(b)
r = b - A.dot(x)
p = r
rsold = r.dot(r)
converged = False
max_iters = b.shape[0]

for i in range(max_iters):
Ap = A.dot(p)
alpha = rsold / (p.dot(Ap))
x = x + alpha * p
r = r - alpha * Ap
rsnew = r.dot(r)

if i % conv_iters == 0 and \
np.sqrt(rsnew) < 1e-10:
converged = i
break

beta = rsnew / rsold
p = r + beta * p
rsold = rsnew

Productivity

Performance



CUNUMERIC
Automatic NumPy Acceleration and Scalability

for _ in range(iter):
un = u.copy()

vn = v.copy()
b = build_up_b(rho, dt, dx, dy, u, v)
p = pressure_poisson_periodic(b, nit, p, dx, dy)

…

Extracted from “CFD Python” course at https://github.com/barbagroup/CFDPython
Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of 
Open Source Education, 1(9), 21, https://doi.org/10.21105/jose.00021

CuNumeric transparently accelerates and scales existing Numpy 
workloads

Program from the edge to the supercomputer in Python by 
changing 1 import line

Pass data between Legate libraries without worrying about 
distribution or synchronization requirements

Alpha release available at github.com/nv-legate

cuNumeric

https://github.com/barbagroup/CFDPython
https://doi.org/10.21105/jose.00021


GPU-Accelerated Data Science with RAPIDS



RAPIDS ACCELERATES POPULAR DATA SCIENCE TOOLS
Delivering enterprise-grade data science solutions in pure python

Pre-Processing
cuIO & cuDF

Data Preparation VisualizationModel Training

Machine Learning
cuML

Graph Analytics
cuGRAPH

Deep Learning
TensorFlow, PyTorch, 

MxNet

Vizualization
CuXFILTER <> pyViz

Dask

GPU Memory

The RAPIDS suite of open source
software libraries gives you the 
freedom to execute end-to-end data 
science and analytics pipelines 
entirely on GPUs.

RAPIDS utilizes NVIDIA 
CUDA primitives for low-level 
compute optimization and exposes 
GPU parallelism and high-bandwidth 
memory speed through user-friendly 
Python interfaces like PyData.

With Dask, RAPIDS can scale out to 
multi-node, multi-GPU cluster to 
power through big data processes.

RAPIDS enables the Python stack with the power of NVIDIA GPUs

https://rapids.ai/


DEVELOP IN PYTHON? LISTEN UP!
Data Scientists apply a wide spectrum of techniques to solve hard data problems

HPDA

Data scientists leverage 

popular data analytics tools 

to perform quantitative 

investigations. Speed and 

scale are key to perform 

comprehensive analysis to 

deliver the best insights.

HPC AI/ML

High Performance Computing 

systems are the backbone of 

today’s cutting-edge research 

and production systems.  

Access to GPU-acceleration is 

one of the most essential 

tools fueling complex models 

on large datasets.

Today’s Machine Learning 

models are increasingly 

complex, with language 

models containing billions of 

nodes. Training and inference 

require significant computing 

for to support production 

tasks.

Preprocess 
Trajectories

Molecular 
Dynamics 
on GPU

time

Analyze 
Trajectories

Train 
Neural 

Network



Pre-Processing
Pandas

Data Preparation VisualizationModel Training

Machine Learning
Scikit-Learn

Graph Analytics
NetworkX

Deep Learning
TensorFlow, PyTorch, 

MxNet

Vizualization
Matplotlib

Dask

CPU Memory

TRADITIONAL DATA SCIENCE APPLICATIONS



Pre-Processing
cuIO & cuDF

Data Preparation VisualizationModel Training

Machine Learning
cuML

Graph Analytics
cuGRAPH

Deep Learning
TensorFlow, PyTorch, 

MxNet

Vizualization
CuXFILTER, pyViz

Dask

GPU Memory

RAPIDS: GPU-ACCELERATED DATA SCIENCE
WITH API ALIGNMENT



DATA SCIENCE API ALIGNMENT
Open source software that accelerates popular data science packages

Function CPU GPU/RAPIDS

Data handling pandas cuDF **

Machine learning scikit-learn cuML **

Graph analytics NetworkX cuGraph

Geospatial GeoPandas/SciPy cuSpatial

Signals SciPy.signal cuSignal

Image Processing scikit-image cuCIM

The RAPIDS and GPU-accelerated PyData stack bring GPGPU to data scientists at the Python layer providing 
familiar APIs without the steep curve of learning new programming language or paradigm



Pre-Processing
cuIO & cuDF

Data Preparation VisualizationModel Training

Machine Learning
cuML

Graph Analytics
cuGRAPH

Deep Learning
TensorFlow, PyTorch, 

MxNet

Vizualization
CuXFILTER <> pyViz

Dask

GPU Memory

RAPIDS: GPU-ACCELERATED DATA SCIENCE
WITH API ALIGNMENT



GPU-ACCELERATED PANDAS WITH CUDF

+• Use RAPIDS CuDF to accelerate computationally 

expensive ETL operations 

• Manipulate GPU DataFrames following the Pandas API

• Create GPU DataFrames from Numpy arrays, CuPy

arrays, Pandas DataFrames, and PyArrow Tables

• Python interface to CUDA C++ library with additional

functionality

• Available via pip and conda

import cudf as pd

import numpy as np

from time import time

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

wine_set = pd.read_csv("data/winequality.csv")

wine_set.head(n=5)

wine_set.tail(n=5)



RAPIDS INTEROPERABILITY
DLPack and __cuda_array_interface__

mpi4py



Notebook 2: Introduction to RAPIDS

Working in Section:
“GPU-Accelerated Data Manipulation with CuDF”



Pre-Processing
cuIO & cuDF

Data Preparation VisualizationModel Training

Machine Learning
cuML

Graph Analytics
cuGRAPH

Deep Learning
TensorFlow, PyTorch, 

MxNet

Vizualization
CuXFILTER <> pyViz

Dask

GPU Memory

RAPIDS: GPU-ACCELERATED DATA SCIENCE
WITH API ALIGNMENT



DATASET SIZES CONTINUE TO GROW

SAMPLING

HISTOGRAMS / DISTRIBUTIONS

DIMENSION REDUCTION  
FEATURE SELECTION

REMOVE OUTLIERS

MASSIVE DATASET

Meet Reasonable Speed vs Accuracy Trade-off

Better to start with as much data as  
possible and explore / preprocess  
to scale to performance needs.

Iterate. Cross Validate & Grid Search.
Iterate Some More.Hours? Days?

Time Increases



DATASET SIZES CONTINUE TO GROW

from sklearn.datasets import make_moons

import pandas

X, y = make_moons(n_samples=int(1e2),

noise=0.05, random_state=0)

X = pandas.DataFrame({'fea%d'%i: X[:, i]

for i in range(X.shape[1])})

from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

y_hat = dbscan.fit_predict(X)



DATASET SIZES CONTINUE TO GROW

from sklearn.datasets import make_moons

import cudf

X, y = make_moons(n_samples=int(1e2), 

noise=0.05, random_state=0)

X = cudf.DataFrame({'fea%d'%i: X[:, i] 

for i in range(X.shape[1])})

from cuml import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

y_hat = dbscan.fit_predict(X)



CUML ALGORITHMS

Decision Trees / Random Forests  
Linear/Lasso/Ridge/LARS/ElasticNet Regression  
Logistic Regression
K-Nearest Neighbors (exact or approximate)
Support Vector Machine Classificationand 
Regression
Naive Bayes

Text vectorization (TF-IDF / Count)  
Target Encoding
Cross-validation / splitting

Holt-Winters
Seasonal ARIMA / AutoARIMA

More to come!

Time Series

Preprocessing

Inference

Classification / Regression

Hyper-parameter Tuning

Cross Validation

Random Forest / GBDT Inference (FIL)

K-Means
DBSCAN
Spectral Clustering
Principal Components (including iPCA)
SingularValue Decomposition
UMAP
Spectral Embedding T-SNE

Clustering Decomposition 

Dimensionality Reduction



Notebook 2: Introduction to RAPIDS

Working in Section:
“GPU-Accelerated Machine Learning with CuML”

**Don’t forget to restart the kernel**



Custom GPU Kernels with Numba



WHAT IS NUMBA? WHEN DO WE USE IT?

Opt-in

Numba only compiles 

functions you specify. You 

don't need to compile the full 

program

Just-in-time compiler PyData ecosystem

Numba is a JIT compiler for 

Python functions that you 

specify. Numba targets both 

CPU and GPU.

While not all functions 

in python can be compiled 

with Numba, 

the PyData ecosystem is well 
covered.

Numba provides the Python programmer a simple way to write customizable GPU accelerated code 
without needing CUDA C/C++

Lower-level CUDA kernel development without leaving Python



NUMBA UFUNCS
Function decorators that help us create Python functions that take in scalars arguments and can be used as NumPy ufuncs

• Operates on scalars

• Compile a pure Python function into a ufunc

• Operates over NumPy arrays as fast as traditional 

ufuncs written in C

• Numba generates surrounding loop allowing 

efficient iteration over the actual inputs

@vectorize @guvectorize

• Operate on higher dimensional arrays and scalars

• Can return arrays of differing dimensions

• Don't return their result value, they fill an array 

taken as an input

@vectorize([float64(float64, float64)])
def f(x, y):

return x + y

@guvectorize([(int64[:], int64, int64[:])], 
'(n),()->(n)')
def g(x, y, res):

for i in range(x.shape[0]):
res[i] = x[i] + y



NUMBA VECTORIZE
NumPy ufuncs operate on data in element-by-element order, and Numba vectorize allows us to accelerate those 

types of operations

size_list = [1000, 10000, 100000, 1000000, 10000000, 

100000000]

numpy_times = []

numba_times = []

for size in size_list:

x=np.random.randn(size).astype(np.float32) + 1

y=np.random.randn(size).astype(np.float32) + 1.1

# Run baseline Numpy implementation

2 * (x - y) / (x + y)

# Run our vectorized Numba function

rel_diff(x, y)

With this "vectorized" Numba function we see improved 

performance as we increase our input size, making this 

solution ideal for large problem sizes.

from numba import vectorize

import numpy as np

import time

@vectorize

def rel_diff(x, y):

return 2 * (x - y) / (x + y)



Notebook 3: Introduction to Numba

Working in Section:
“Numba Vectorize/Guvectorize"



GPU SUPPORT IN NUMBA
Numba compiles on both the CPU and GPU, below are some additional useful features that can be used on device

Supported Features Details

Built-in types Int, float, complex, bool, None, tuple

Built-in functions
Abs(), bool, complex, enumerate(), len(), min(), max(), 

round(), zip()

Standard library modules Most of math, cmath, and operator

Numpy Support ndarray (.shape, .strides, .ndmin, .size), indexing, slicing

GPU support in Numba: https://numba.readthedocs.io/en/stable/cuda/overview.html



CUDA ARRAY INTERFACE
How can we utilize CuPy, RAPIDS, and Numba together in one program?

This interface offers a standard protocol for 
different libraries to use and exchange data 

that is stored on device.

Namely, for Numba we can pass these types of 
objects directly to our custom kernels.

CUDA Array Interface adopted by:

• Numba

• CuPy

• PyTorch

• PyArrow

• mpi4py

• ArrayViews

• JAX

• PyCUDA

• DALI

• RAPIDS

• cuDF

• cuML

• cuSignal

• RMM

CUDA



56

BASIC THREAD HIERARCHY



NUMBA CUDA
Lower-level CUDA kernel development without leaving Python

import numba

@cuda.jit()

def vector_add(arr1, arr2, result):

startx = cuda.grid(1)

stridex = cuda.gridsize(1)

arr_size = arr1.shape[0]

for i in range(startx, arr_size, stridex):

result[i] = arr1[i] + arr2[i]

import numba

@jit()

def vector_add(arr1, arr2):

arr_size = arr1.shape[0]

result = np.empty(size=(arr_size))

for i in prange(arr_size):

result[i] = arr1[i] + arr2[i]

return result

BEFORE AFTER

▪ Initialize data or copy data to GPU

▪ Lower-level support for custom CUDA kernels without C/C++

▪ JIT compiled kernels for fast execution

▪ Move data between DL frameworks, RAPIDS, and Numba



CUSTOM NUMBA KERNEL
Numba and CuPy interoperability can be achieved through the CUDA array interface. CuPy arrays can be used 

within our custom Numba kernels

numba_l2_norm[blocks_per_grid, threads_per_block](d_x)

output = cp.sqrt(sum_reduce(d_x))

from numba import (cuda,

float32,

jit)

import numpy as np

import cupy as cp

import time

@cuda.reduce

def sum_reduce(a, b):

return a + b

@cuda.jit

def numba_l2_norm(x):

start = cuda.grid(1)

stride = cuda.gridsize(1)

for i in range(start, x.shape[0], stride):

x[i] = x[i] * x[i]

x = np.random.rand(2 ** 25)

d_x = cp.array(x)

threads_per_block = 512

blocks_per_grid = 128

~27 x speedup np.linalg.norm(x, 1)



Notebook 3: Introduction to Numba

Working in Section:
"Custom Numba Kernels: Interoperability"



SAXPY METHODS
Below we observe the difference in a basic SAXPY example in CUDA C++ and Numba

N = 2**20

A=cp.random.randn(N).astype(cp.float32)

B=cp.random.randn(N).astype(cp.float32)

C = saxpy(2.0, A, B)

__global__

void saxpy(int n, float a, float *x, float *y)

{

for (int i = blockIdx.x * blockDim.x + threadIdx.x;

i < n;

i += blockDim.x * gridDim.x)

{

y[i] = a * x[i] + y[i];

}

}

int N = 1<<20;

cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);

cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

saxpy<<<4096,256>>>(N, 2.0, d_x, d_y);

cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);

@vectorize(['float32(float32, float32, float32)'], 

target='cuda')

def saxpy(a, x, y):

return a * x + y



Notebook 3: Introduction to Numba

Working in Section:
“Numba custom kernel: SAXPY"



SHARED MEMORY INTRO
Numba can automatically transfer NumPy arrays to the device, but there are times when we want to speed up 

access to the data

numba.cuda.shared.array(shape, type)

• Allocate a shared array with shape and type

• Must be allocated on device

• Returned array-like object acts like a normal 

device array

• Often we have each thread populate an 

element in the shared array

• After we use syncthreads() to make sure all 

the threads have finished their work

Shared memory is readable and writable by all threads in the 

block. Threads can operator together on a solution.

Essentially, we have a manually-managed data cache



NUMBA MATRIX MULTIPLICATION
Utilize shared memory to accelerate our matrix multiplication 

@cuda.jit

def fast_matmul(A, B, C):

sA = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

sB = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

x, y = cuda.grid(2)

tx = cuda.threadIdx.x

ty = cuda.threadIdx.y

bpg = cuda.gridDim.x

tmp = float32(0.)

for i in range(bpg):

sA[ty, tx] = 0

sB[ty, tx] = 0

if y < A.shape[0] and (tx + i * TPB) < A.shape[1]:

sA[ty, tx] = A[y, tx + i * TPB]

if x < B.shape[1] and (ty + i * TPB) < B.shape[0]:

sB[ty, tx] = B[ty + i * TPB, x]

cuda.syncthreads()

for j in range(TPB):

tmp += sA[ty, j] * sB[j, tx]

cuda.syncthreads()

if y < C.shape[0] and x < C.shape[1]:

C[y, x] = tmp

x_d = cp.arange(576).reshape([24,24])

y_d = cp.ones([24,24])

z_d = cp.zeros([24,24])

threadsperblock = (TPB, TPB)

blockspergrid_x = ceil(z_h.shape[0] / threadsperblock[0])

blockspergrid_y = ceil(z_h.shape[1] / threadsperblock[1])

blockspergrid = (blockspergrid_x, blockspergrid_y)

%time fast_matmul[blockspergrid, threadsperblock](x_d, y_d, z_d)

Defining our arrays in shared memory

Make sure to sync threads 



Notebook 3: Introduction to Numba

Working in Section:
“Numba custom kernel: Matrix multiplication"



INTRODUCTION SUMMARY
What tools do we have at our disposal to start our main case study?

Function CPU GPU/RAPIDS

Data handling pandas cuDF

Machine learning scikit-learn cuML

Function CPU GPU

Numerical Computing NumPy CuPy

JIT Kernels Numba Numba



Case Study:

Accelerating Geospatial Nearest-Neighbor Search

Evaluating Your Options for Accelerated Numerical Computing in Pure Python

Matt Penn [GTC22 S41645]



CALCULATING DISTANCES UNDERPINS MANY NUMERICAL APPLICATIONS
As the number of distances grows, so does the risk of compute bottleneck

Performing distance calculations are the cornerstone of many 
numerical applications from fundamental research to machine 
learning.

▪ Distance matrices for clustering algorithms

▪ Training nearest neighbor models (sometimes relaxing 
precision for speed)

▪ Calculating exact nearest neighbors for applications where 
accuracy is necessary

▪ Gridding LiDAR point clouds to generate Digital Elevation 
Models in remote sensing applications

▪ Performing text similarity search for information retrieval 
applications

▪ Performing large scale image similarity searches

▪ This list goes on and on!

In many of these applications, distances need to be calculated a 
tremendous number of times.

In this session, we will explore accelerated n-dimensional 
numerical computing through the lens of a proxy brute force 
exact nearest neighbor problem. Our techniques will be put to 
the test, calculating up to 274.88M geospatial distance 
calculations/comparisons.

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/

https://www.usgs.gov/media/images/lidar-point-cloud-washington-dc-0



USE CASE – DYNAMIC OBSERVATION TO REFERENCE POINT RESOLUTION
GPU-accelerated exact nearest neighbor calculation to reduce data pipeline bottlenecks

Goal: Let’s say we have an application that is attempting to resolve geospatial observations their closest reference points. In this scenario, 
observations and reference points are dynamic and variable. This makes indexing optimizations less viable and require complete recomputing 
at each timestep. This sounds an interesting opportunity for apply a brute force nearest neighbor algorithm.

Constraints: Our near real-time application requires an exact solution when performing an MxN nearest neighbor resolution. Our developer 
team comprised primarily Python developers. Serial or low scale parallel techniques cannot keep up with throughput goals and constrain the 
size problem that can be solved. Developing in C/C++ would imply slower prototyping cycles, require new skills for the Python developers, 
and add to code maintenance complexity.

Dataset: We generate a synthetic dataset of geospatial coordinates arbitrarily distributed. These data comprise a set of M reference points 
and N unresolved observations. By selecting variations of M and N, we can run scenarios on larger and smaller problem sizes and analyze the 
performance implications.

Observations and 

reference points (and 

thereby decision 

boundaries) 

change/move 

between timesteps 

steps

…



HIGH LEVEL ALGORITHM
Brute Force Geospatial Nearest Neighbor Search

x0

x2

x1

xm-1

y0

y2

y1

Yn-1

X0 - y0

X1 - y0

X2 - y0

Xm-1 - y0

X0 – y1

X1 – y1

X2 – y1

Xm-1 – y1

X0 – y2

X1 – y2

X2 – y2

Xm-1 – y2

X0 - yn-1

X1 – yn-1

X2 – yn-1

Xm-1 – yn-1

idx0

idx2

idx1

idxm-1

dist0

dist2

dist1

distn-1

Input observations X and Y of arbitrary 

size m and n, respectively

Calculate distances between each point in X and Y Return the argmin along the Y-axis and 

its corresponding minimum distance

We chose a brute force technique for its simplicity to explain and additional 

arithmetic intensity to magnify the tradeoffs between techniques

Step 1 Step 2 Step 3
Source

https://en.wikipedia.org/wiki/Haversine_formula#/media/File:Law-of-haversines.svg


Single Threaded CPU & 

Single GPU Techniques



WHAT WE WILL EVALUATE
Single-CPU and Single-GPU Methodologies

Before thinking about scaling our code, developers typically prove out methods on single processors. In this section, we will discuss 
several popular approaches to solving our proxy problem and inspect some performance metrics. In the end, we will appreciate the 
benefit of parallel execution on GPUs. During this process, we will not write a single line of C/C++!

Single CPU

Conventional For Loop

NumPy Broadcasting

Scikit-Learn Brute Force KNN

Numba CPU Kernel

Single GPU

CuPy Broadcasting

cuML Brute Force KNN

Numba GPU Kernel

Problem Size: 540M

216 (observations) * 213 (reference points)

As we progress through the examples, each 

technique will have memory and speed 

implications



CPU – CLASSIC DOUBLE FOR LOOP
This example does not serve much purpose besides a lower limit

def loop_solve(a, b):

out_idx = np.empty(

(a.shape[0]), dtype=np.uint32)

out_dist = np.empty(

(a.shape[0]), dtype=np.float32)

for obs_idx in range(a.shape[0]):

glob_min_dist = 1e11

glob_min_idx = 0

for ref_idx in range(b.shape[0]):

temp_dist = loop_haversine(

a[obs_idx, 0],

a[obs_idx, 1],

b[ref_idx, 0],

b[ref_idx, 1])

if temp_dist < glob_min_dist:

glob_min_dist = temp_dist

glob_min_idx = ref_idx

out_dist[obs_idx] = glob_min_dist

out_idx[obs_idx] = glob_min_idx

return out_idx, out_dist

import numpy as np

import math

def loop_haversine(lat1, lon1, lat2, lon2):

first_sin = math.sin((lat2 - lat1) / 2.)

second_sin = math.sin((lon2 - lon1) / 2.)

a = first_sin * first_sin + \

math.cos(lat1) * \

math.cos(lat2) * \

second_sin * second_sin

a = math.sqrt(a)

if a > 1.:

a = 1.

elif a < 0:

a = 0.

a = math.asin(a)

return 2.0 * a

The code on the left applies a classic 

double for loop, not leveraging any 

specialized libraries or techniques -- those 

not familiar with numerical computing 

libraries might choose something like this 

first:

▪ Extremely straightforward implementation

▪ Painfully slow ... (almost 45 mins to 
complete)

▪ Probably what many people think when 
calling python “slow”

Good news, we have (many) 

other options!

42 min 34 s



SINGLE GPU VS SINGLE CPU - NUMPY/CUPY BROADCAST
NumPy and CuPy share nearly identical syntax but a huge speed disparity

import cupy as cp

def cupy_haversine(lat1, lon1, lat2, lon2):

return 2.0 * cp.arcsin(

cp.sqrt(cp.sin((lat2 - lat1) / 2.0)**2 + \

cp.cos(lat1) * \

cp.cos(lat2) * \

cp.sin((lon2 - lon1) / 2.0)**2)

)

def cupy_solve(a, b):

a_broad = a[:,cp.newaxis]

temp = cupy_haversine(

a_broad[:,:,0],

a_broad[:,:,1],

b[:,0],

b[:,1]

)

cp.abs(temp, out=temp, dtype=np.float32)

out_idx = temp.argmin(axis=1)

out_dist = temp[cp.arange(a.shape[0]), out_idx]    

return out_idx, out_dist 

Code blocks are identical aside from 

import statements and variable names

Both cases experience a significant 
boost in performance when compared 
to the classic for loop example!

Boosts can come at the cost of memory

import numpy as np

def numpy_haversine(lat1, lon1, lat2, lon2):

return 2.0 * np.arcsin(

np.sqrt(np.sin((lat2 - lat1) / 2.0)**2 + \

np.cos(lat1) * \

np.cos(lat2) * \

np.sin((lon2 - lon1) / 2.0)**2)

)

def numpy_solve(a, b):

a_broad = a[:,np.newaxis]

temp = numpy_haversine(

a_broad[:,:,0],

a_broad[:,:,1],

b[:,0],

b[:,1]

)

np.abs(temp, out=temp)

out_idx = temp.argmin(axis=1)

out_dist = temp[np.arange(a.shape[0]), out_idx]    

return out_idx, out_dist

12.2 s 277 ms

In this example, our CuPy option performs ~44x faster than the NumPy equivalent!

NumPy CuPy

X(3) Y(1) Z(3)

Broadcasting

+Speed
-Memory



SINGLE-CPU VS SINGLE-GPU: SKLEARN/CUML BRUTE KNN
Sklearn and cuML share nearly identical syntax but a huge speed disparity

from cuml.neighbors import NearestNeighbors

def cuml_knn_solve(a, b):

cuknn = NearestNeighbors(

algorithm="brute",

metric="haversine")

cuknn.fit(b)

out_dist_cuml, out_idx_cuml = \

cuknn.kneighbors(

a, 

n_neighbors=1, 

return_distance=True)

return (out_idx_cuml.reshape(a.shape[0]),

out_dist_cuml.reshape(a.shape[0]))

from sklearn.neighbors import NearestNeighbors

def sklearn_knn_solve(a, b):

knn = NearestNeighbors(

algorithm="brute",

metric="haversine")

knn.fit(b)

out_dist_sklrn, out_idx_sklrn = \

knn.kneighbors(

a, 

n_neighbors=1, 

return_distance=True)

return (out_idx_sklrn.reshape(a.shape[0]),

out_dist_sklrn.reshape(a.shape[0]))

46.9 s 306 ms

In this example, our cuML option performs ~153x faster than the 

scikit-learn equivalent!

scikit-learn RAPIDS cuML

Less code & speedup for each option

Code blocks are identical aside from 

import statements and variable 

names

Another welcomed boost in speed!



Working in Notebook 4:
“Evaluating Your Options for Numerical Computing in Pure Python

with CuPy and RAPIDS”



SINGLE CPU – NUMBA KERNEL
JIT compile a nearest neighbor CPU kernel to boost speed of our double for loop

@jit(nopython=True, fastmath=True)

def numba_cpu_haversine(lat1, lon1, lat2, lon2):

first_sin = math.sin((lat2 - lat1) / 2.0)

second_sin = math.sin((lon2 - lon1) / 2)

return 2.0 * math.asin(

math.sqrt(first_sin * first_sin + \

math.cos(lat1) * \

math.cos(lat2) * \

second_sin * second_sin)

)

import numpy as np

from numba import jit

@jit(nopython=True)

def numba_cpu_solve(a, b):

out_idx = np.empty(

(a.shape[0]), dtype=np.uint32)

out_dist = np.empty(

(a.shape[0]), dtype=np.float32)

for obs_idx in range(a.shape[0]):

glob_min_dist = 1e11

glob_min_idx = 0

for ref_idx in range(b.shape[0]):

temp_dist = numba_cpu_haversine(

a[obs_idx,0],

a[obs_idx, 1],

b[ref_idx, 0],

b[ref_idx, 1])

if temp_dist < glob_min_dist:

glob_min_dist = temp_dist

glob_min_idx = ref_idx

out_dist[obs_idx] = glob_min_dist

out_idx[obs_idx] = glob_min_idx

return out_idx, out_dist

In this example, we leverage the Numba

JIT compiler generate a (much) faster 

double for loop kernel.

With Numba, we pay a one-time JIT 

compilation penalty but after that, JIT 

kernels can be extremely fast –

approaching C/C++ speeds.

▪ Our Numba kernel is very Pythonic

▪ Completes in 35.4 s, 72x faster than our double 
naïve double for loop

Let’s not get complacent, we still 

have another single GPU trick up our 

sleeve!

35.4 s



SINGLE GPU – NUMBA CUDA KERNEL 
Fastest option using a hand-tuned CUDA kernel that implements warp level optimizations

@cuda.jit(

"void(float32[:,:], float32[:,:], uint32[:,:], float32[:,:])", 

fastmath=True)

def block_min_reduce(coord1, coord2, block_idx, block_dist):

"""

GPU accelerated pairwise distance comparisons in single

precision.

"""    

startx, starty = cuda.grid(2)

stridex, stridey = cuda.gridsize(2)

seed = nb.float32(1e11)

for i in range(starty, coord2.shape[0], stridey):    

b_min_val = seed

b_min_idx = nb.uint32(0)

for j in range(startx, coord1.shape[0], stridex):

#simplified for slide presentation

local_val = haversine(coord2, coord1)

if local_val < b_min_val:

b_min_val = local_val

b_min_idx = j

b_min_val, b_min_idx = \

_warp_min_reduce_idx_unrolled(

b_min_val, b_min_idx)

if cuda.laneid == 0:

block_dist[i, cuda.blockIdx.x] = b_min_val

block_idx[i, cuda.blockIdx.x] = b_min_idx

@cuda.jit(device=True, inline=True)

def warp_min_reduce_idx_unrolled(val, idx):

mask  = 0xffffffff    

shfl_val = cuda.shfl_down_sync(

mask, val, 16)

shfl_idx = cuda.shfl_down_sync(

mask, idx, 16)

if val > shfl_val:

val = shfl_val

idx = shfl_idx

shfl_val = cuda.shfl_down_sync(

mask, val, 8)

shfl_idx = cuda.shfl_down_sync(

mask, idx, 8)

if val > shfl_val:

val = shfl_val

idx = shfl_idx

……

shfl_val = cuda.shfl_down_sync(

mask, val, 1)

shfl_idx = cuda.shfl_down_sync(

mask, idx, 1)

if val > shfl_val:

val = shfl_val

idx = shfl_idx

return val, idx

@cuda.jit(

"void(float32[:,:], uint32[:,:], float32[:], uint32[:])", 

fastmath=True)

def global_min_reduce(block_dist, block_idx, out_dist, out_idx):

startx, starty = cuda.grid(2)

stridex, stridey = cuda.gridsize(2)

seed = float32(1e11)

for i in range(starty, out_dist.shape[0], stridey):

g_min_dist = seed

g_min_idx = 0

for j in range(startx, block_idx.shape[1], stridex):

local_dist = block_dist[i, cuda.threadIdx.x]

if local_dist < g_min_dist:

g_min_dist = local_dist

g_min_idx = block_idx[i, cuda.threadIdx.x]

g_min_dist, g_min_idx = \

_warp_min_reduce_idx_unrolled(

g_min_dist, g_min_idx)

if cuda.laneid == 0:

out_dist[i] = g_min_dist

out_idx[i] = g_min_idx

10.8 ms



HIGH LEVEL CUDA KERNEL

dist0,0

dist1,0

distm-1,0

dist0,1

dist1,1

distm-1,1

dist0,2

dist1,2

distm-1,2

dist0,32

dist1,32

distm-1,32

idx0,0

idx1,0

idxm-1,0

idx0,1

idx1,1

idxm-1,1

idx0,2

idx1,2

idxm-1,2

idx0,32

idx1,32

idxm-1,32

idx0

idx1

idxm-1

dist0

dist1

distn-1

1st CUDA kernel calculates intermediate solution After global synchronization, 2nd kernel 

calculates global solution

block_min_reduce global_min_reduce

cuda.synchronize()



FIRST KERNEL COMPUTES INTERMEDIATE SOLUTION

9 2 9 59318

9 312

1 2

1

0 5 6 74321

0 325

2 3

2

mask  = 0xffffffff 

shfl_val = 

cuda.shfl_down_sync(

mask, val, 16)

shfl_idx = 

cuda.shfl_down_sync(

mask, idx, 16)

if val > shfl_val:

val = shfl_val

idx = shfl_idx

Each block (green) in the grid (grey) solves a portion of the problem in parallel.  Threads (yellow) communicate between 

other threads in the same warp (dotted line box) to perform a sequential addressing tree-based parallel reduction.  An 

intermediate solution is generated of shape – m x cuda.blockSize.y

Grid dimension determines width of intermediate solution
Warp minimum + argmin reduction

m
in

 (d
ist)

a
rg

m
in

Note - For readability, we only 

show 8 of 32 threads per warp



SECOND KERNEL COMPUTES GLOBAL SOLUTION

9 2 9 59318

9 312

1 2

1

0 5 6 74321

0 325

2 3

2

Each block (green) in the grid (grey) solves a portion of the problem in parallel.  Threads (yellow) communicate between 

other threads in the same warp (dotted line box) to perform a tree based parallel reduction.  An intermediate solution is 

generated of shape – m x cuda.blockSize.y

block dimension matches intermediate solution width Warp minimum reduction + index

mask  = 0xffffffff 

shfl_val = 

cuda.shfl_down_sync(

mask, val, 16)

shfl_idx = 

cuda.shfl_down_sync(

mask, idx, 16)

if val > shfl_val:

val = shfl_val

idx = shfl_idx

m
in

 (d
ist)

a
rg

m
in

Note - For readability, we only 

show 8 of 32 threads per warp



Working in Notebook 5:
“Evaluating Your Options for Numerical Computing in Pure Python

with Numba”



BENCHMARKS
Compare benchmarks from single threaded CPU and single GPU techniques

Single CPU Timing Single GPU Timing
X-Factor

(vs CPU equivalent)

X-Factor

(vs Slowest CPU Option)

X-Factor

(vs Fastest CPU Option)

Conventional For Loop 42 mins 34s

NumPy Broadcast 12.2 s CuPy Broadcast 277 ms 44 x 9,220 x 44 x

Sklearn Brute Force KNN 46.9 s cuML Brute Force KNN 306 ms 153.2 x 8,355 x 39.8 x

Numba Kernel 35.4 s Numba CUDA 10.8 ms 3,277 x 236,481 x 1,129.6 x

We observe the library and processor selected to perform the computations has a clear impact on performance.

This is particularly true when choosing GPUs as the compute workhorse -- achieving anywhere from hundred(s) to million 

times speedup when compared to the single CPU techniques!



RECAP OF TOOLS USED TODAY

Function CPU GPU/RAPIDS

Data handling pandas cuDF

Machine learning scikit-learn cuML

Function CPU GPU

Numerical Computing NumPy CuPy

JIT Kernels Numba Numba

▪ The processor(s) selected to execute the numerical computing can have a tremendous impact on runtime speeds

▪ Every library is not created equally -- with little effort, a Python developer can achieve significant speedups in their 
code

▪ The GPU ecosystem of libraries available to developers has grown significantly -- RAPIDS, CuPy, Numba CUDA --
provide huge speedups with a familiar look and feel as their CPU counterparts

▪ Python offers a great ecosystem for accelerating your applications with GPUs!



https://openhackathons.org

https://gpuhackathons.org/




Extra content:

Single Node, Multi-CPU &

Multi-GPU Techniques



WHAT WE WILL EVALUATE
Single Node, Multi-CPU and Multi-GPU Methodologies for Scaling Compute

When the problem size increases (without relaxing latency expectations) slower and less efficient 
techniques become unusable…

Fortunately for Python developers, that doesn’t always mean its time to port to C/C++!

Single Node, Multi-CPU

Numba Kernel (prange)

Single Node, Multi-GPU

Dask Numba CUDA Kernel

Python Threading + Numba CUDA

Scaled Problem Size: 274.88B

224 (observations) * 214 (reference points)

Compute time becomes extremely long for 

slower methods and memory footprint at 

runtime turns into a limiting factor. This forces 

us to triage our techniques and explore multi-

processor methods.



NUMBA PRANGE
NumPy and CuPy share nearly identical syntax but a huge speed disparity

@jit(nopython=True, fastmath=True)

def numba_cpu_haversine(lat1, lon1, lat2, lon2):

first_sin = math.sin((lat2 - lat1) / 2.0)

second_sin = math.sin((lon2 - lon1) / 2)

return 2.0 * math.asin(

math.sqrt(first_sin * first_sin + \

math.cos(lat1) * \

math.cos(lat2) * \

second_sin * second_sin)

)

Extremely similar to the Numba 

implementation – just replace 

“range” with “prange”

Numba’s “prange” function leverages 

ALL CPU cores to solve a problem

We achieve a “same day solution” 

but nothing usable in near real-time 

applications

import numpy as np

from numba import jit, prange

@jit(nopython=True, parallel=True)

def numba_multi_cpu_solve(a, b):

out_idx = np.empty(

(a.shape[0]), dtype=np.uint32)

out_dist = np.empty(

(a.shape[0]), dtype=np.float32)

for obs_idx in prange(a.shape[0]):

glob_min_dist = 1e11

glob_min_idx = 0

for ref_idx in range(b.shape[0]):

temp_dist = numba_cpu_haversine(

a[obs_idx,0],

a[obs_idx, 1],

b[ref_idx, 0],

b[ref_idx, 1])

if temp_dist < glob_min_dist:

glob_min_dist = temp_dist

glob_min_idx = ref_idx

out_dist[obs_idx] = glob_min_dist

out_idx[obs_idx] = glob_min_idx

return out_idx, out_dist

Good news, we still have 

other options!2hrs 3min 31s



MULTI-GPU EXECUTION WITH DASK
Leverage the dask_cudf API to construct a local GPU cluster and farm out Numba CUDA kernel execution

cuDF
DataFrame

Dask cuDF 
DataFrame

cuDF DataFrame
(partition)

cuDF DataFrame
(partition)

cuDF DataFrame
(partition)

cuDF DataFrame
(partition)

Numba CUDA kernels 
operate on partition 

of data

Numba CUDA kernels 
operate on partition 

of data

Numba CUDA kernels 
operate on partition 

of data

Numba CUDA kernels 
operate on partition 

of data

All available GPUs fully utilized during runtimeCreate Dask cuDF DataFrame to partition data and use a pool of GPUs to complete work

JupyterLab extension for GPU utilization 

dashboards -- included in the RAPIDS container

jupyterlab_nvdashboard

https://github.com/rapidsai/jupyterlab-nvdashboard


COMPUTING A DASK TASK GRAPH
Behind the scenes, Dask creates a task graph that schedule compute until jobs are complete



DASK CUDF + NUMBA
NumPy and CuPy share nearly identical syntax but a huge speed disparity

Instantiate a local and programmable CUDA GPU cluster

Distribute data cross cluster and launch kernel on data partitions

Results are returned to GPU DataFrame on the default GPU

def get_nearest(

part_df, coord2=None, block_idx=None, block_dist=None):

coord1 = part_df[["LAT_RAD", "LON_RAD"]].as_gpu_matrix()

coord2 = coord2.as_gpu_matrix()

block_idx_mat = cp.empty((coord1.shape[0], 32), dtype=np.uint32)

block_dist_mat = cp.empty((coord1.shape[0], 32), 

dtype=np.float32)        

out_idx = cp.empty(

(coord1.shape[0]), 

dtype=np.uint32

)

out_dist = cp.empty(

(coord1.shape[0]), 

dtype=np.float32

)    

bpg = 32, 108

tpb = 32, 16    

_block_get_nearest_brute[bpg, tpb](

coord2, 

coord1, 

block_idx_mat,

block_dist_mat

)   

bpg = (1, 108*20)

tpb = (32, 16)    

_global_get_nearest_brute[bpg, tpb](

block_dist_mat, 

block_idx_mat, 

out_dist, 

out_idx

)      

cuda.synchronize()

part_df["out_idx"] = out_idx

part_df["out_dist"] = out_dist

return (part_df)

from dask_cuda import LocalCUDACluster

from dask.distributed import Client

import cudf

import dask_cudf

from numba import cuda, int32, float32, jit

import numpy as np

cluster = LocalCUDACluster()

client = Client(cluster)

…

ddf = dask_cudf.from_cudf(gdf_obs, npartitions=4)

gdf_result = ddf.map_partitions(

get_nearest, 

coord2=gdf_ref,

).compute()

D
o
u
b
le

 N
u
m

b
a
 C

U
D

A
 c

a
ll

 

se
q
u
e
n
ce

Im
p
li

ci
t 

u
se

 o
f 

th
e
 

C
U

D
A
 A

rr
a
y
 I
n
te

rf
a
ce

14.5s

Without much effort, we use Dask cuDF, we achieve a comfortable 

511x boost in speed! 



MULTI-THREADED, MULTI-GPU IMPLEMENTATION
Leverage Python threading library + Rapids Memory Manager + Numba CUDA kernels schedule work on available GPUs

Main Process + Define Chunking Strategy

RMM to Allocate Data with Managed Memory Strategy

CPU Thread 0

1. Set CUDA context (GPU 0) 

for CPU thread

2. Launch CUDA kernels on 

partition(s)

CPU Thread 1

1. Set CUDA context (GPU 1) 

for CPU thread

2. Launch CUDA kernels on 

partition(s)
…

CPU Thread (N-1)

1. Set CUDA context (GPU N-1) 

for CPU thread

2. Launch CUDA Kernels on 

partition(s)

GPUs Connected with NVLink/NVSwitch

All available GPUs fully 

utilized during runtime

Single GPU fully utilized 

during runtime (25% overall)

JupyterLab Extension for GPU utilization dashboards 

jupyterlab_nvdashboard

vs

https://github.com/rapidsai/jupyterlab-nvdashboard


MANUAL THREADING + RMM + NUMBA CUDA

def get_nearest(

obs_points, ref_points, out_idx, out_dist,

batch_size="auto", multigpu=True, n_gpus="auto"):

…

if n_gpus == "auto":

n_gpus = len(cuda.list_devices())

size = obs_points.shape[0]

if batch_size == 'auto':

batch_size = size/n_gpus

batch_size = int(batch_size)

n_jobs = int(size / min(batch_size, size))

queues = [queue.Queue() for i in range(n_gpus)]

qid = 0

for j in range(n_jobs):

if qid >= len(queues):

qid = 0

job = {}

start = j * batch_size

if j == (n_jobs - 1):

end = size

else:

end = (j + 1) * batch_size

job["start"] = start

job["end"] = end

job["d_m_ref"] = ref_points

job["d_m_obs"] = obs_points

job["d_m_out_idx"] = out_idx

job["d_m_out_dist"] = out_dist        

queues[qid].put(job)

qid += 1

workers = []

for qid in range(len(queues)):

w = threading.Thread(

target=_get_nearest_multi, 

args=[queues[qid], qid])

w.start()

workers.append(w)

for w in workers:

w.join()

def _get_nearest_multi(q, cid):

cuda.select_device(cid) # bind device to thread

while(q.unfinished_tasks > 0):

job = q.get()

d_ref = cuda.to_device(

job["d_m_ref"]

)

d_obs = cuda.to_device(

job["d_m_obs"][job["start"]:job["end"]]

)

d_block_idx = cuda.device_array(

(job["end"] - job["start"], 32), 

dtype=np.uint32)

d_block_dist = cuda.device_array(

(job["end"] - job["start"], 32), 

dtype=np.float32)        

bpg = 32, 108

tpb = 32, 16

block_min_reduce[bpg, tpb](

d_ref,

d_obs,

d_block_idx,

d_block_dist           

)

bpg = (1, 108*20)

tpb = (32, 16)

global_min_reduce[bpg, tpb](

d_block_dist,

d_block_idx,

job["d_m_out_dist"][job["start"]:job["end"]],

job["d_m_out_idx"][job["start"]:job["end"]]

)        

cuda.synchronize()

q.task_done()

# GPU imports

from numba import cuda, int32, float32, types

import cupy as cp

import numba as nb

import rmm

import cudf

# CPU imports

import threading

import queue

import numpy as np

# use managed memory for allocations

cuda.set_memory_manager(rmm.RMMNumbaManager)

rmm.mr.set_current_device_resource(

rmm.mr.ManagedMemoryResource())

In this example, we demonstrate use of the 

RMM and Python threading to schedule 

asynchronous kernel execution on data 

chunks using our previously developed 

Numba CUDA kernels:

▪ Share data between GPUs using 
NVLink/NVSwitch

▪ Generates data partitions 

▪ Build queues of compute on those partitions to 
be scheduled on available GPUs

▪ Completes our work in ~12.7s 

▪ Roughly 12% faster than dask_cudf

▪ 584x faster than the multi-processing technique

12.7s

This tailor-made 

implementation, 

squeezes an 

additional XX % 

performance on 

this problem!O
u
r 

fa
m

il
ia

r 
d
o
u
b
le

 k
e
rn

e
l 

la
u
n
ch

 p
a
tt

e
rn

Im
p
li

ci
t 

u
se

 o
f 

C
U

D
A
 A

rr
a
y
 I
n
te

rf
a
ce



BENCHMARKS

Implementation Timing
X-Factor

(vs Multi CPU Option)

Numba Multi CPU (prange) 2hrs 3min 31s 1x

Dask + Numba CUDA 14.5s 511x

Threading + RMM + Numba CUDA 12.7s 584x

Utilizing all GPUs on a DGX Station A100 (4 GPUs) boosted performance by almost 600x over the multi-CPU 

processing method!

As we scaled up our problem size, it became necessary to consider distributing work to multiple processors.  

In this section, we demonstrated an ability to implement this and achieve some excellent performance.

Compare benchmarks from multi-CPU and multi-GPU techniques



DISCUSSION – FURTHER BENCHMARKING



BENCHMARKS
All techniques on the initial problem size -- MxN = 0.54 B

Note – For completeness, we included multi-CPU and multi-GPU benchmarks for the small problem size

Methodology Timing
X-Factor

(vs slowest single-CPU)

X-Factor

(vs fastest single CPU)

X-Factor

(vs Multi-CPU)

Single 

CPU

Conventional For Loop 42 mins 34s 1x 0.0047 x 0.00043 x

NumPy Broadcast 12.2 s 209 x 1 x 0.09 x

Sklearn Brute Force KNN 46.9 s 54 x 0.26 x 0.023 x

Numba Kernel 35.4 s 72 x 0.34 x 0.03x

Multi-

CPU
Numba Kernel (prange) 1.1 s 2.322 x 11.1 x 1 x

Single 

GPU

CuPy Broadcast 277 ms 9,220 x 44 x 3.9 x

cuML Brute Force KNN 306 ms 8,355 x 39.8 x 3.6 x

Numba CUDA 10.8 ms 236,481 x 1,129.6 x 101.9 x

Multi-

GPU

Dask cuDF + Numba CUDA 530 ms 4,818.9 x 23 x 2.1 x

Threading + RMM + Numba CUDA 9 ms 283,777.8 x 1,355.6 x 122.2 x



BENCHMARKS
All techniques on the initial problem size -- MxN = 0.54B

Methodology Timing
X-Factor

(vs slowest single-CPU)

X-Factor

(vs fastest single CPU)

Single 

CPU

Conventional For Loop 42 mins 34s 1x 0.0047 x

NumPy Broadcast 12.2 s 209 x 1 x

Sklearn Brute Force KNN 46.9 s 54 x 0.26 x

Numba Kernel 35.4 s 72 x 0.34 x

Single 

GPU

CuPy Broadcast 277 ms 9,220 x 44 x

cuML Brute Force KNN 306 ms 8,355 x 39.8 x

Numba CUDA 10.8 ms 236,481 x 1,129.6 x



BENCHMARKS
All techniques on the initial problem size -- MxN = 4.29B

Methodology Timing
X-Factor

(vs slowest single-CPU)

X-Factor

(vs fastest single CPU)

Single 

CPU

Conventional For Loop 4 hr 52 mins 14s 1 x 0.0055 x

NumPy Broadcast 1 min 37 s 190.6 x 1 x

Sklearn Brute Force KNN 6 mins 14 s 46.9 x 0.26 x

Numba Kernel 4 min 41 s 62.4 x 0.35 x

Single 
GPU

cuML Brute Force KNN 1.87 s 9,376 x 51.9 x

Numba CUDA 65 ms 269,753 x 1,492 x

Note – For completeness, we included multi-CPU and multi-GPU benchmarks for the small problem size

Note – CuPy broadcast methodology did not complete due to the limited memory of the T4. With larger GPUs this method would 
outperform our other options.



BENCHMARKS
All techniques on the initial problem size -- MxN = 4.29 B

Note – For completeness, we included multi-CPU and multi-GPU benchmarks for the medium problem size

Methodology Timing

X-Factor

(vs slowest single-

CPU)

X-Factor

(vs fastest single CPU)

X-Factor

(vs Multi-CPU)

Single 

CPU

Conventional For Loop
4 hr 52 mins 

14s
1 x 0.0055 x 0.0005 x

NumPy Broadcast 1 min 37 s 190.6 x 1 x 0.09 x

Sklearn Brute Force KNN 6 mins 14 s 46.9 x 0.26 x 0.023 x

Numba Kernel 4 min 41 s 62.4 x 0.35 x 0.03 x

Multi-

CPU
Numba Kernel (prange) 8.72 s 2,010.7 x 11.1 x 1 x

Single 
GPU

cuML Brute Force KNN 1.87 s 9,376 x 51.9 x 4.66 x

Numba CUDA 65 ms 269,753 x 1,492 x 134.2 x

Multi-
GPU

Dask cuDF + Numba CUDA 554 ms 31,650 x 175.1 x 15.7 x

Threading + RMM + Numba CUDA 199 ms 88,110 x 487.4 x 43.8 x



BENCHMARKS
Multi-CPU vs Fastest GPU Methods techniques on the scaled-up problem size -- MxN = 274.88 B

From our prior performance tables, we recall the significant performance gains we obtain by leveraging all 24 cores of our CPU.

Our multi-GPU techniques achieve over a 200x speedup when compared to our multi-CPU technique. Also impressive, our 
single GPU techniques outperform the multi-CPU (24 cores) method by orders of magnitude on our scaled-up problem!

Methodology Timing
X-Factor

(vs Multi-CPU)

Multi-CPU Numba Kernel (prange) 9 min 17 s 1 x

Single GPU

cuML Brute Force KNN 2 min 11 s 4.25 x

Numba CUDA 5.05 s 110 x

Multi-GPU

Dask cuDF + Numba CUDA 2.2 s 253 x

Threading + RMM + Numba CUDA 1.77 s 314.7 x

Note – Because of their speed, we also apply our most efficient single-GPU techniques to the scaled-up problem. Due to their slowness 
and time constraints, this was not feasible for the CPU alternatives.



KEY TAKEAWAYS

During this talk, we explored a wide range of n-dimensional array computing techniques through the lens of a popular nearest neighbors
proxy problem. This problem allowed us to demonstrate the feasibility of each method and assess its strengths and weaknesses. Clearly, 
the motivated Python developer has many options to accelerate their numerical computing workloads while staying comfortably in their 
“native language” –- Python.

Single CPU

Conventional For Loop

Scikit-Learn Brute Force KNN

NumPy Broadcasting

Numba CPU Kernel

Single GPU

cuML Brute Force KNN

CuPy Broadcasting

Numba GPU Kernel

Single Node, Multi-CPU

Numba Kernel (prange)

Single Node, Multi-GPU

Dask Numba CUDA Kernel

Python Threading + Numba CUDA

▪ The processor(s) selected to execute the numerical 
computing can have a tremendous impact on 
runtime speeds

▪ Every library is not created equally -- with little 
effort, a Python developer can achieve significant 
speedups in their code

▪ The GPU ecosystem of libraries available to 
developers has grown significantly -- RAPIDS, CuPy, 
Numba CUDA -- provide huge speedups with a 
familiar look and feel as their CPU counterparts

Whether latency or cost of computation is more 

important, GPUs are the dominant strategy!




